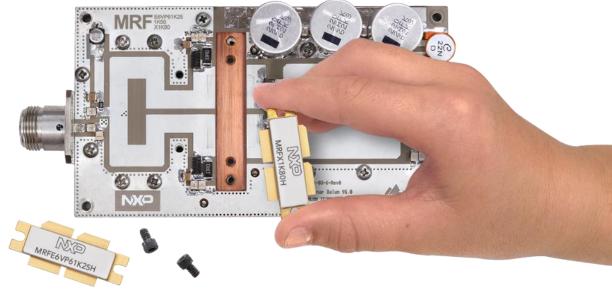
65 V LDMOS INTRODUCTION

NOVEMBER 2017



SECURE CONNECTIONS FOR A SMARTER WORLD

Introduction

- NXP released a new LDMOS technology for 65 V drain voltage, focused on ease of use.
 - Higher voltage enables a higher RF output power with no compromise.
- The first transistor of the 65 V MRFX series is the MRFX1K80H, the industry's most powerful CW RF transistor: 1800 W.
- The MRFX1K80H is pin-compatible with existing 50 V transistors, to reduce design cycle times.

A Brief History of LDMOS for ISM and broadcast applications

- 1992: first LDMOS transistor released by the Motorola RF power team.
- 2006: introduction of the first 1kW LDMOS transistor by Freescale, followed by four other lower power devices.
- 2010-2012: Freescale launched industry-first portfolio of 5 extremely rugged 50 V LDMOS transistors in ceramic packaging, from 25 to 1250 W.
- 2014-2015: complemented this portfolio with 5 transistors in plastic package, enabling lower thermal resistance.
- 2016: NXP (ex Freescale) launched the 1500 W MRF1K50H, pushing 50 V LDMOS close to its limits of usability (higher power levels at 50 V are challenging to match to 50 ohm).
- 2017: introducing the MRFX series with the 1800 W MRFX1K80H, based on new 65 V LDMOS technology developed in NXP's internal fab. Designed for ease of use.

Why 65V? Ease of use.

More power – Higher voltage enables higher power density, which helps reduce the number of transistors to combine.

Fewer combining losses, smaller PAs, simpler power supply management.

Faster development time – With higher voltage, the output power can be increased while retaining a reasonable output impedance.

Easier matching to 50 ohms; transistors can be used wideband.

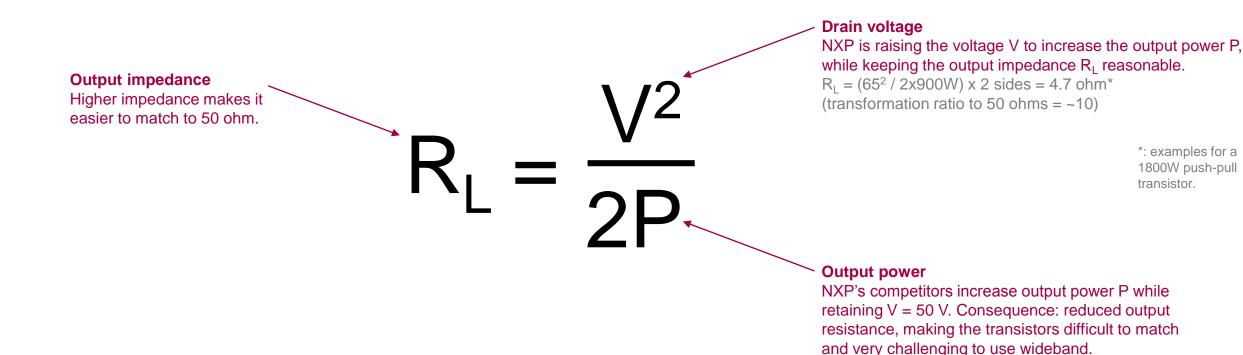
Design reuse – This impedance benefit also ensures pin-compatibility with current 50 V LDMOS transistors for better scalability.

Little to no retuning from existing 50 V power amplifiers.

Manageable current level – Higher voltage reduces the current losses in the system.

Fewer stresses on DC supplies, better system efficiency, less magnetic radiation.

Wide safety margin – The higher breakdown voltage of 193 V typical improves ruggedness and allows for higher efficiency classes of operation.

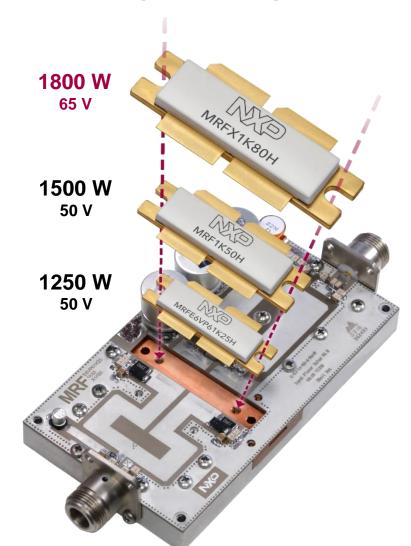


Better reliability, higher efficiency.

NXP RF Technology Design Strategy: Focus on Ease of Use

To keep a reasonable output impedance above 1500 W, NXP is raising the voltage

Ease of use = higher power WITH higher voltage.

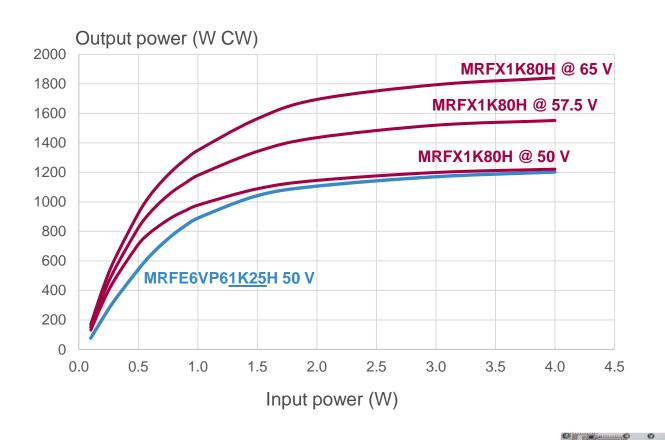

 $R_L = (50^2 / 2x900W) \times 2 \text{ sides} = 2.8 \text{ ohm}^*$ (transformation ratio to 50 ohms = ~18)

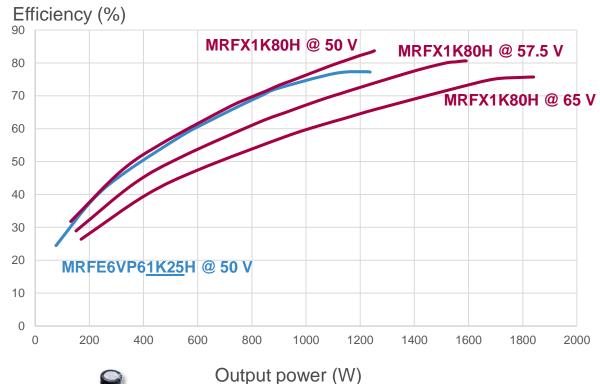
NXP RF Transistor Design Strategy: Focus on Scalability

Transistors from the MRFX series fit into existing PCBs designed for previous 50 V transistors

 Same PCB for MRFE6VP61K25H MRE6VP61K25N MRF1K50H MRF1K50N MRFX1K80H MRFX1K80N

Little to no retuning needed



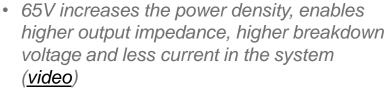

- Faster Time-To-Market
- One platform, multiple products

Easy Upgrade from Existing 50 V Solutions

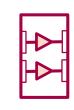
Data taken on the same 27 MHz reference circuit: no retuning

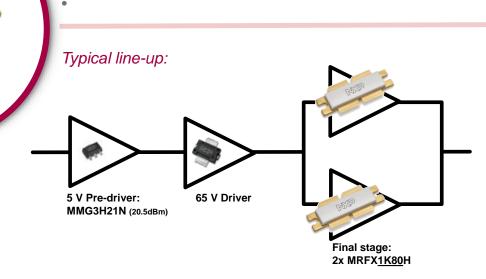
MRFX1K80H details

Datasheet


- 1800 W CW
- 1.8-400 MHz
- 65 V LDMOS
- Unmatched input and output
- Push-pull
- NI-1230 air cavity ceramic package
- 0.09°C/W thermal resistance
- 193 V typical typical breakdown voltage V_{(BR)DSS}
- Extreme ruggedness: handles 65:1 VSWR
- Warranted availability until 2032 minimum

Available reference circuits:


Frequency (MHz)	Voltage (V)	Pout (W)	Gain (dB)	Drain eff. (%)	Size (inch)
27	60	1800 cw	27.8	75.6	2.9 x 6.9
64	65	1800 Pulse	27.1	69.5	3 X 5.5
81.36	63	1700 cw	24.5	76.3	2.9 x 6.4
87.5-108	60	1600 cw	23.6	82.5	2.9 x 5.1
128 (2-up)	65	3775 Pulse	25.4	67.5	5 x 5
144	65	1800 cw	23.5	78.0	2.9 x 4.7
230	65	1800 Pulse	25.1	75.1	4 x 6
325	63	1700 Pulse	22.8	64.9	4 x 6


Comments:

Designed for ease of use:

MRFX1K80 Target Markets

Industrial, Scientific, Medical (ISM)

- Laser generation
- Plasma etching
- Magnetic Resonance Imaging (MRI)
- Diathermy, skin laser, RF ablation
- Industrial heating, welding and drying systems
- Particle accelerators

Broadcast

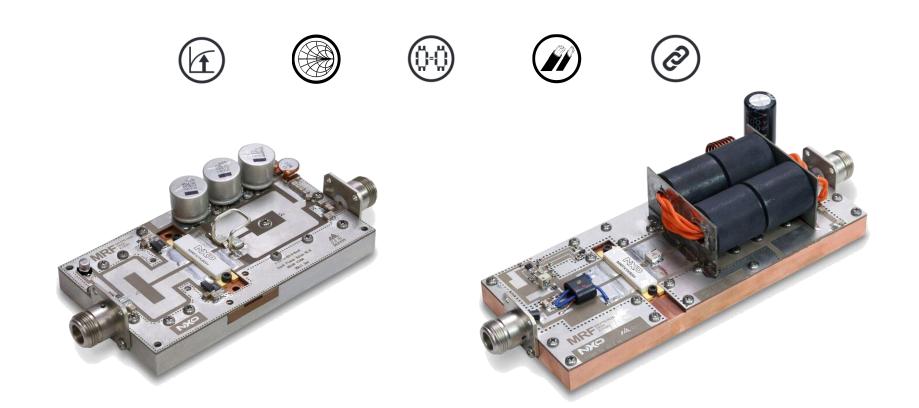
- Radio broadcast (FM/DAB)
- VHF TV broadcast

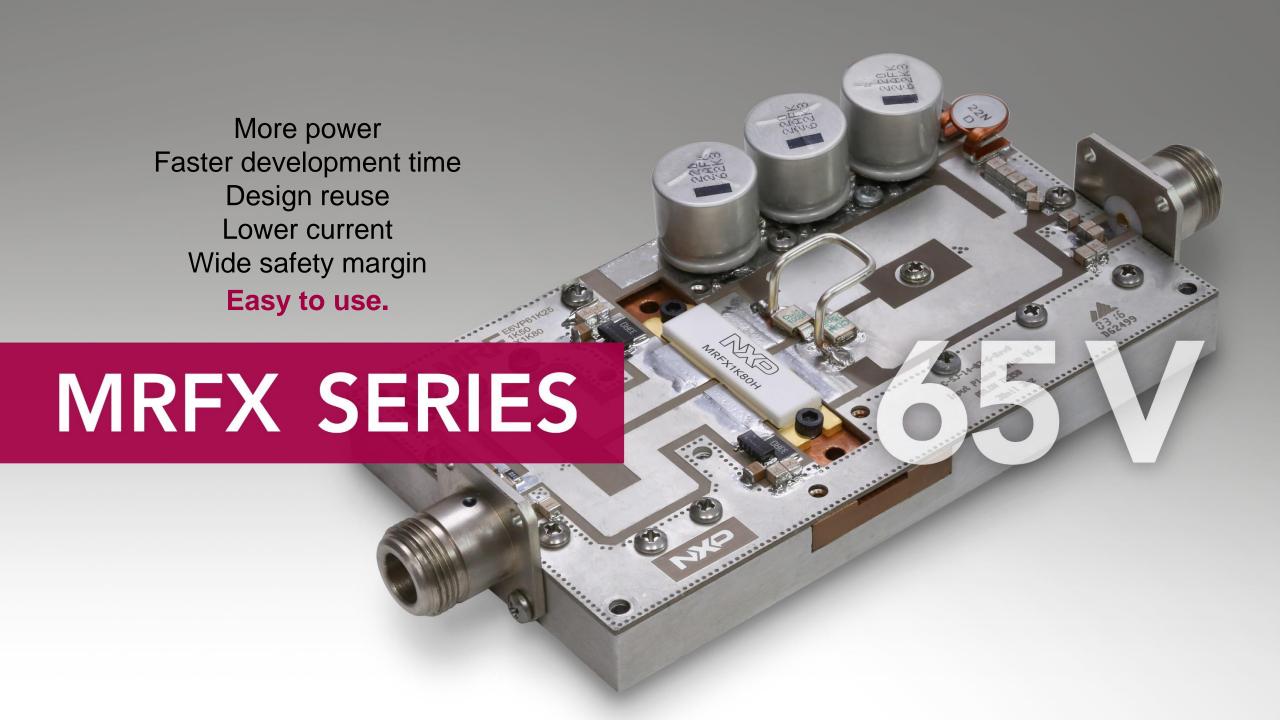
Aerospace

- VHF omnidirectional range (VOR)
- HF and VHF communications
- Weather radar

Mobile Radio

- VHF base stations




For more information

• 65 V LDMOS web page: www.nxp.com/65V

MRFX1K80H web page with datasheet: www.nxp.com/MRFX1K80H

SECURE CONNECTIONS FOR A SMARTER WORLD